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We have derived an approximate solution for the one-dimensional steady equation o f  electron balance 

DaV2n § vn § fin ~ -- 0, in which the coefficients u and [3 may vary as to sign. The nonlinear term was 

approximated by two segments o f  straight lines by the method o f  least squares, as a result o f  which 

the original equation was reduced to a system of  two linear differential equations whose solution is 

presented in analytical form. We have obtained numerical data for the determination o f  the electron 

concentration profile in the range-8 < R~[3no/Da <_ 20 for a plane, cylindrical, and spherical configuration 

o f  the discharge zones. 

The electron balance equation in a stationary positive discharge column, with consideration of ambipolar diffusion 
to the wall, linear and quadratic with respect to the electron concentration of the sources of formation or disappearance 

of particles within the volume has the form 

D.v2n + vn + ~ n  2 .= O. (1) 

Let us rewrite Eq. (1) in dimensionless form for the one-dimensional case 

nO/•2 -2 d2n P ~ ~- vRZ n-}- = 0 ,  
dr 2 + r Or ~ --D-~a n (2) 

where p is the geometry factor (p = 0 for the plane, p = 1 for the cylinder, p = 2 for the sphere); R is the radius in the 
case of a cylinder or sphere, or it represents the distance from the axis of symmetry to the wall in the case of plane geometry. 
In the average-pressure region [1] the following represents ordinary boundary conditions for Eq. (2): 

d~ Idr r=0 = 0 ,  ~ (1 )=0 .  (3) 

In analytical form the solution of Eq. (2) with conditions (3) is possible only in the absence of the fourth term in the balance 
equation. It was initially derived by Schottky [2] for cylindrical geometry: 

n = Jo (yr), y = 2,405 (cylindrical geometry) 

n =  sin (~r) - - ,  ? ---- n = 3,141 (spherical), (4) 
~r 

n =  cos (Tr), 7 = a/2 =: 1,571 (piane) 

where 72 = vR2/Dn; Jo is the Bessel function of the first kind, of zeroth order. 
The numerical solutions of Eq. (2) have been derived for certain values of the parameter [3noR2/Da in [3-6]. The 

solution of Eq. (2) in the absence of the third term is presented for cylindrical geometry in the form of elliptical functions. 
In [4, 5] we find an analysis of Eq. (2) and the value of the parameter S = - f n  ( 2n/n)dA, is obtained numerically; here 
A represents the area of the lateral cross section of the discharge for all possible combinations of the parameters uRZ/d~ 
and [3noR2/Da. Here we also find the normalized distributions of electron concentrations; however, we find no specific 
indication of the values of the above-cited parameters for which they were obtained. Finally, Eq. (2) was solved in [6] 
by the variational Rayleigh-Ritz method for the cases of plane and cylindrical geometry. A two-term approximation 
was employed. Analytical formulas are presented for the calculation of the electron concentration profile for the case 
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in which v > 0 and in the range -0.75 < 3no/v _< c~. From a brief  review of  the completed projects it follows that the 

solutions of Eq. (2) have been obtained for certain special cases or in certain intervals of change in the determining parameters. 

It therefore remains urgent subsequently to develop additional methods for the solutions of  Eq. (2), and here, from the 

practical standpoint, it would be desirable to achieve these in the form of  analytical approximations. It is precisely to 

this problem that the present study is devoted. 

Initially we will examine the case involving cylindrical geometry, i.e., with p = I. The nonlinear function 
changes from zero at the wall of the discharge chamber (r = 1) to I at the axis of symmetry (r -- 0). In this interval we 

will approximate the function -~z with two broken lines. 

= / a n ,  O ~ n ~ k ,  r ~ r ~ l ,  
/ 
[1 + b ( ~ - -  l), k ~  1,~ O ~ r ~ r ~ ,  (5) 

where ak = 1 + b(k - 1). Approximation by the method of  least squares yields the following values for the coefficients 
in formula (5): a = 0.375, b = 1.625, k -- 0.5000. Substituting ~ in Eq. (2) with the approximating expression (5), we 
arrive at the following system of two linear equations: 

1 d (r d~)  ( vRZ f3n~ ~ n ~  O - ~ r ~ r l ;  
r dr \ -A--,/+\-b-~ +b--b-~-~ ! ~ +  D~ 

ct (ct~)  I~,R2 al3noR~) 
-7 dr r - ~ r  ' --F~--D-~a -- F --D--~-a i n  : O, r l~.~r~l .  

(6) 

For the sake of convenience, we will denote the subsequent notation as follows: 

Do + J= 2; +"  
vR 2 

- M ;  (1--b)=C. 
D~ 

Equations (6) can then be represented in the following form: 

1 e (7a) 
r dr r dr / q -Tzn-[ -TC:O'  O~ - r~ r1 '  

1 d I ' r d ~ l  
r dr \ -d'}-J q- ~z~" = O, r~ ~ r ~ 1. (7b) 

The function ~ must satisfy condition (3), as well as the conditions of  conjugacy for the solutions of  Eqs. (7a) and (7b) 

for r = r 1, i.e., at this point the equality of  electron concentrations and their first derivatives must be satisfied. The general 

solutions of  Eqs. (7a) and (7b), with consideration of the first of the conditions in (3), are written in the form 

" ~ :  [CIJ 0 (~,r) - -  TC/'~ 2, 0 ~ r ~ rl, (8) 

[C2Jo (~,r) ~- C3Yo (~,r), rl ~ r ~ l, 

where Yo is the Bessel function of the second kind, of zeroth order; C1, C2, and C 3 are coefficients. 
It follows f rom the conditions n-(0) = 1 and n' (1)  - 0 that 

C1 = I -q- TC/ .~  2, (9)  

C~Jo (~,) + C.~Yo (~,) = O, 
(1o) 

The conjugacy conditions for r = r I yield the following equations: 

C1Jo (37rl) - -  T C / y  2 : k ,  

CJ'o (~f l) -~ C~Yo (,%rl) ---- k, 

C;~J~ (yr O = C2~J~ (~r~) -F C~,Y~ (;~r~), 

( l l )  

(12) 

(13) 
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where J1 and YI are f i rs t -order  Bessel functions, of the first and second kind, respectively. Thus we have five un-  
knowns: C1, C2, Cz, % and rl and as many equations (9)-(13). In these equations T is a specified parameter,  while A is 
expressed in terms of  ~t: )~2 = ,~2 + T(a - b). After  transformation, we reduce system (9)7(13) to two equations with two 
unknowns 7 and rl: 

where Q = Jo(A)Yo(Arl) - Yo00Jo(Ari). 
Subsequently, based on the formulas 

Jo ('vn) = (~ + TC/.#)/(1 + TC/~,~), 

(1 + TC/72) 7J1 (?r~) = k~, [do (~,) YI  (Xr~) - -  Yo (~) J~ (Lr~)]lO, 

System (14), (15) was solved numerically in its dependence on the parameter T. 

(14) 

(15) 

C, = - -  kYo (~,)/O; C3 = kdo (~)lO (16) 

we calculated the coefficients in formula (8). The coefficient  C 1 for all cases (p = 0, p = 1, p = 2) is calculated in accordance 

with formula (9). The positiveness of  n is tested over the entire region of its determination. 

Analogous results were obtained for  spherical (p = 2) and plane (p = 0) geometries. For the case p = 2 the formula 

for the calculation of electron concentration is written in the form 

n =  [C1 sin (Tr) TC/72, 0 ~ r ~ rt, 
~,r (17) 

t Ca sin (~,r)/~,r + C3 cos (~,r)/s rl ~ r G~ 1, 

where ~ and r 1 are calculated from the system of  equations 

sin (Tr~)/'V1 = (k -t- TC/72)/(1 -t- TC/72), (18a) 

(1 + TCI72)[ricos ('~rl) - -  sin (?rl)/?] = - -  k~rl {r~ ctg [L (1 - -  r,)] + 1/~,}, (18b) 

while the coefficients C z and C s are calculated on the basis of the following formulas: 

Ca = - -  ks cos (~)/sin [~. ( 1 - -  rl)], C3 = k~ sin (~,)/sin [~ (1 - -  rl)]. (19) 

For plane geometry (p = 0) the profile of electron concentration is calculated on the basis of  the following formula: 

- /C1 cos (?r) - -  TC/? 2, 0 ~ r ~ rl, (20) 
n = [C2 cos (~r) 4- C3 sin (~,r), rl ~. r ~ 1, 

where ~/and r 1 are calculated from the system of equations 

cos (~rl) = (k + TC/~tz)/(1 q- TC/72), (21) 

~, ( 1 + TC/~r sin ('~rl) = ks ctg [~ (1 - -  r~)], (22) 

while the coefficients C 2 and C s are calculated on the basis of the following formulas: 

C2 = k sin (~,)/sin [~, (1 - -  rl)], C3 = - -  k cos (K)/sin [~, (1 - -  rl)]. (23) 

The results of the calculations can be found in Table 1. Figure 1 shows some of the electron-concentrat ion profiles that 

have been calculated for cylindrical and spherical geometries. In the particular case in which T ~ 0, the results of the 
calculation coincide with the familiar analytical solution (4). This can e seen from the computational data for  T = -0.01. 
The negative values of T, and this thus included l~, correspond to a discharge regime with predominant volume recombination. 
With an increase in { T { in this region the electron concentration profile becomes flatter and flatter, which corresponds 
to a reduction in the parameter ~I. The electron concentration gradient becomes larger only near the wall. Consequently, 
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Distributions of  dimensionless electron concentrations: 

a) p-- 1;b) p=2. 

TABLE 1. Coefficients in Formulas (8), (17), and (20) as a Function 

of the Parameter T 

--5 9,453 
--2 7,151 
--0,01 5,778 

2 4,548 
5 2,932 

10 0,824 
20 --1,917 

--3 5,043 
--2 4,173 

2 0,818 
5 --1,527 

--8 14,686 
--5 12,686 
--2 I0,907 

2 8,971 
5 7,907 

t0 6,880 
20 6,683 

Cl 

3.352 
11320 
0,999 
0,840 
0,717 
0,634 
0,591 

12,128 
2,354 
0,693 
0,526 

3,965 
1,685 
1,163 
0,898 
0,805 
0,730 
0,681 

Cylinder 
I 1,074 

1,083 
O,999 
0,890 
0,730 
0,540 
0,369 

Plane 

0,848 
0,906 
1,059 
1,075 

Sphere 
1,391 
1,260 
1,105 
0,900 
O,766 
0,598 
0,379 

Cz 

(p = 1) 

3,963 
1,387 

--0,0003 
--0,094 
--0,I~I 
--0,150 
--0,016 

(p=O) 
0,367 
0,260 

--0,349 
--t,607 

(p= 2) 
--0,395 
--0,186 
--0,050 

0,021 
0,011 

--0,071 
--0,273 

I .r 

I, 153 
1,975 
2,407 
2,792 
3,325 
4,132 
5,530 

0,410 
0,95i 
2,017 
2,569 

1,299 
2,136 
2,767 
3,496 
4,004 
4,809 
6,260 

2,753 
2,530 
2,405 
2,302 
2,193 
2, I39 
2,363 

1,980 
1,850 
1,252 
0,590 

3,419 
3,288 
3,187 
3,118 
3,128 
3,260 
3,766 

0,882 
0,872 
0,858 
0,839 
0,805 
0,742 
0,625 

0,897 
0,892 
0,865 
0,835 

o, 882 
0,868 
o, 850 
0,820 
o, 792 
0,739 
o, 645 

this method is constrained in the case of rather large negative T, a limitation imposed by the absence of  solutions for 

Eq. (15) which satisfy the condition of conjugacy with respect to the first derivative. As T increases toward the positive 

values which coincide to discharge with predominant  stepwise ionization (B > 0), the electron concentration distribution 

becomes increasingly compressed against the discharge axis. In mathematical  terms this is equivalent to an increase in 

the parameter  7. In this case, within some range of  variations in T the parameter  M, and this therefore also includes 

u, remains positive. This corresponds to the discharge regime in which, in addition to the stepwise ionization, direct 

ionization exists as well. In the case of  sufficiently large positive T for  the cylinder and the plane M and 7 become negative. 

This discharge regime is characterized by the predominance of stepwise ionization processes (B > 0) and electron adhesion 
(v < 0). 

For the plane geometry let us compare the calculational results obtained f rom formulas (20) to the solution which 
in [6] is approximated by the formula  

where 

(24) 

Cs/C,, ~ 0,0212 ( ~no/V ) .  
1 + 0,812fJno/~ 

For T = -3 and M = 5.043 the value of flno/u = T / M  = -0.595 and C J C  4 = -0.0244. When we take into consideration 
that C 4 + C 5 = 1, in this case (24) is writ ten in the fo rm 
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n =  1,02501cos -ff-r - -0 ,02501cos  r . (25) 

Comparison of  the calculations based on formulas (20) and (25) demonstrates that up to values of  r = 0.5 there 
is virtually no divergence (<1%), while it increases in the range 0.5 < r _< 1, not exceeding 6%. In this case the values 
of  -ff are more readily found f rom formula (20). Let us note that in comparison with [6] the approximate solution of  Eq. 
(2) has also been found for the region with a negative value for the parameter u. 

NOTATION 

n, electron concentration; no, electron concentration at the axis of symmetry; ~ = n/no, dimensionless electron 

concentration; x, coordinate; R, characteristic dimension of discharge zone; r = x/R,  dimensionless coordinate; D~,, coefficient 

of  ambipolar diffusion; v, effect ive coefficient  of  direct ionization (v > 0) or adhesion (u < 0);/~, effective coefficient 
of stepwise ionization (# > 0) or recombination (# < 0). 
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POSSIBILITIES OF ELEVATING SPECIFIC CHARACTERISTICS 

OF ACTIVE MEDIA WITH HEAT PUMPING AT LOW CO z CONCENTRATIONS 

V. T. Karpukhin, Yu. B. Konev, and N. I. Shal'nova UDC 621.375.826 

We present the calculational results, as well as those of our experimental study, with respect to the specific 
characteristics of active media with a low carbon-dioxide content. 

In the works of  numerous authors, including [1, 2], reference is unavoidably made to the influence exerted by 

the composition, temperature, and pressure of  the gas on the characteristics of carbon-dioxide-based molecular lasers. 

The expansion of heated mixtures of CO 2 and H20 with nitrogen in a supersonic nozzle is a well-known method of achieving 
markedly nonequilibrium media. The drawback of this method is its comparatively high relaxation losses, generally amounting 
to 50-60% at a carbon-dioxide gas concentration of ~c  = 10-20% and a water vapor concentration of 9 u  --- 0.5-3%. The 

utilization of nozzles in which the components are mixed eliminates this shortcoming, but some of the positive characteristics 
of the homogeneous method are lost. There exists an alternative possibility for  reducing the relaxation losses, namely 

to utilize gas mixtures with a limited CO z content at a level of 1-3%. Heat-exchange heaters made on a base of aluminum 
or zirconium ceramics [3-5] allow us to heat the working mixture to a temperature of 2300-2500 K. The calculations 

and experiments carried out by the authors demonstrate that under the above-described conditions the relaxation losses 
do not exceed 15-25%, while the specific disposable energy (the energy stored in the oscillations of  the nitrogen molecules 

and the antisymmetric oscillation mode of the CO2, multiplied by the quantum efficiency) amounts to 50-100 J/g at a 

deceleration pressure of  2.5-6 MPa. 
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